Products Range

ParaLink

ParaLink geogrids are planar structures consisting of a monoaxial array of composite geosynthetics strips.

Each single longitudinal strip has a core of high modulus, low creep polyester yarn tendons encased in a tough, durable polyethylene sheath. The single strips are connected by low strength cross-laid polyethylene elements which give a grid like shape to the composite. ParaLink has superior unidirectional strength and is available as a custom-made product in a range of strengths between 100 kN/m and 1350 kN/m.

Bidirectional strength can be obtained by installing two ParaLink layers at right angles to each other.

ParaGrid

ParaGrid geogrids are planar structures consisting of a biaxial array of composite geosynthetics strips.

The strips are comprised of a core of high modulus, low creep polyester yarn tendons encased in a tough, durable polyethylene sheath. ParaGrid has good bidirectional strengths and is available in strength from 30 kN/m to 200 kN/m in the main direction (longitudinal) and from 5 to 100 kN/m in the secondary direction.

ParaDrain

ParaDrain has a unique combination of reinforcement and drainage. They are manufactured using a proven technology of the ParaGrid reinforcing products in combination with heat-bonded nonwoven continuous filament geotextiles as filters.

The reinforcing function is provided by high tenacity polyester yarns encased in a durable sheath of polyethylene which is profiled to provide a drainage channel. The nonwoven geotextile acts as a filter to allow pore water to escape into the drainage channel from the soil mass in which the product is placed. ParaDrain has good bidirectional strength and is available in strength from 50 kN/m to 200 kN/m in the main direction (longitudinal) and 5 or 15 kN/m in the secondary direction.
in terms of tensile strength, extension, modulus etc. The polymeric sheath provides a physical and chemical barrier to external environments which pose a threat to product performance and durability. Core and sheath materials are chosen to suit specific customer requirements.

ParaLink is suitable for structural applications where a long term design life (50-120 years typically depending on the different existing regulations) is required.

Typical applications are:

- Reinforcement of embankments over soft soils.
- Reinforcement of embankments constructed over areas prone to subsidence; if subsidence occurs then the ParaLink bridges across the void (so formed) thus maintaining support for the embankment.
- Reinforcement of the foundation of piled embankments; ParaLink assists in the transfer of the embankment loadings directly onto the piles so that the foundation soil supports a negligible load improving the stability and reducing settlements.
- **Steep slope construction** as main reinforcement in combination with Terramesh units or ParaGrid.

ParaGrid is suitable for structural applications where a long term design life (50-120 years typically depending on the different existing regulations) is required.

Typical applications are:

- **Reinforcement of the fill of steep slopes;** ParaGrid steep slopes can be built using different types of facings according to the Contractor’s preference.
- **Reinforcement of the fill in segmental block walls;** ParaGrid can be used in combination with any type of block.
- **Reinforcement of low embankments on soft soils** to limit and manage differential settlements.
- **Reinforcement in soil veneer applications;** ParaGrid is typically used as reinforcement to stabilize soil layers on sliding sloped surfaces (e.g. Landfill cappings are the most typical application).

ParaDrain is for use in traditional geogrids applications (as ParaGrid) but in conditions in which the soil to be reinforced has particularly poor drainage properties. Such soils include those with a high fines content whose shear strength and reinforcement bond characteristics are adversely affected by the presence of water.

By providing a regular array of positive drainage ParaDrain allows water, trapped in the soil to be reinforced to rapidly dissipate thus enabling it to gain early strength and improve its bond with the reinforcement thereby stabilising the soil mass quickly and effectively.

ParaDrain enables the use of marginal filling materials which would be otherwise removed from the site and replaced with high quality soil. ParaDrain is suitable for structural applications where a long term design life (50-120 years typically depending on the different existing regulations) is required; it’s typically used for the reinforcement of steep fill slopes.
Soils suitable for reinforcing

All soils develop tensile strain during shear deformation, consequently the reinforcement can develop tensile forces when placed in any soil, provided the reinforcement is in an appropriate orientation.

It follows then that all soils may be reinforced. However it requires much less reinforcement to stabilise good quality granular soils than mixed or clay soils. This is the reason why compact granular soils are the standard construction material for reinforced soil applications and the significant opportunity which opens up by the use of the ParaDrain range to reinforce cohesive soils.

Behaviour of geosynthetic reinforcements under long term loads

There are four main requirements for geosynthetic reinforcement materials:

Strength
- Initial strength (nominal breaking load)
- Reduction of initial strength due to installation damage
- Adjustment of initial strength due to the creep behaviour of the reinforcement
- Effect of temperature on the short and long term tensile properties

Stiffness
- Initial elongation compatible with the serviceability requirements of the reinforced soil structure
- Effects of installation damage on the elongation behaviour of the product
- Effect of creep on the long term elongation properties
- Effect of temperature on the short and long term tensile properties

Durability
- Effect of ultra-violet light
- Effect of oxidation on polyolefins (PP and PE)
- Effect of hydrolysis on polyester

Bond
- Depending on soil type
Design load

The maximum design load (T_{design}), that the reinforcement can be relied to deliver at the end of the design life and at a design temperature, can be calculated with the formula:

$$T_{\text{design}} = \frac{T_{\text{nominal}}}{F_{\text{creep}} \times F_m}$$

where T_{nominal} is the nominal breaking load corresponding to the short term tensile strength; F_{creep} is the safety factor due to the creep behaviour at the fixed design life and F_m is the safety factor depending on the product itself and from the construction and environmental effects.

For most polymeric materials, ambient temperatures coincide with, or are close to, their visco-elastic phase. Thus creep becomes a significant consideration in assessing the long term properties of the reinforcement.

The stress/strain/time characteristics (at constant temperature) of reinforcement geosynthetics can be visualised in terms of a three-dimensional body with stress, strain and time comprising the three axes. By projecting this body into each of the three planes we obtain the information required to develop the correct design.
Creep behaviour
Creep is the increase in elongation of a material under a constant applied load; this performance is influenced by temperature.

The long-term performance of a geosynthetic is highly dependent on its creep behaviour.

Over a service life of 100-120 years Paraproducts can sustain over 64% at their initial strength; compared with polyolephine reinforcements (polypropylene or polyethylene geogrids or fabrics) of identical nominal strength they can resist 50% more load.

Product durability
The polyethylene outer coating of the Paraproduct materials provides the best protection from chemical attack.

Whilst the polyester core is highly resistant to chemical degradation, the outer coating provides added security such that the geogrid will continue to perform throughout the design life in the most adverse conditions associated with waste materials and “brown field” sites.

Resistance to installation damage
The high tenacity polyester fibres of the Paraproducts are protected by a thorough and durable polyethylene coating that prevents the load carrying yarns from being damaged during the installation.

Paraproducts are resilient to the destructive forces encountered during installation with negligible loss in strength. In contrast, fabrics used for reinforcement can lose up to 60% of their ultimate strength during construction because of their vulnerable unprotected structure.
ParaLink BBA certifications
Agreement Certificate No 03/4065 relates to the ParaLink geocomposite products, for use as basal reinforcement under highway embankments constructed on or over
- soft foundation soils
- piled foundations
- areas prone to subsidence

ParaGrid BBA certifications
Roads and Bridges Agreement Certificate No 98/R098 relates to ParaGrid geocomposites for use as reinforcement in embankments with slope angles up to 70°.
Agreement Certificate No 03/4032 relates to the anchor vertical wall system for ParaGrid reinforced soil retaining walls.

CE marking
Slope construction using Paraproduts

There are various methods available for slope construction using Paraproduts.

The type of facing used is largely dependent on Contractor preference and desired aesthetics of the slope.

Steep slopes

Standard wrap-around
This method can be used with larger vertical spacings between geogrid reinforcement layers resulting in a slight curvature at the slope face.
This produces a more natural looking slope with increased variation in terms of light, shade, and moisture conditions.

Permanent shuttering
A permanent shutter at the front face provides an increase in the rate of construction with an even front-face.
This form of construction is ideally suitable where the designer wishes to achieve a grass finish with minimum variation across.

Para-Mesh solution
The ideal solution designed by Maccaferri which joins the advantages of the combined use of Paraproduts with the steel Terramesh units.
Paraprodut materials provide the necessary strength to guarantee the overall stability of the structure while preformed Terramesh units act as secondary reinforcement and permanent shuttering maximizing the speed of construction.
This system is recommended for high structures.
Cost benefits

Reinforced soil structures provide a practical solution for steep slope construction without incurring the additional cost associated with a conventional retaining wall. A reinforced steep slope will typically be less than half the cost of a conventional retaining wall.

ParaDrain reinforcement enables the use of marginal soils improving the typical saving of a soil reinforced structure and makes this solution feasible with any locally available filling.

Environmental benefits

Paraproduct solutions reduce the demand on non-renewable materials used to construct reinforced concrete structures. Furthermore, green faced slopes minimise the visual impact on our environment and provide habitat for our fauna and flora.

Shallow slope

Reinforced slopes less than 45 degrees may be designed without the wrap around detail or a permanent shuttering system. In such cases a three dimensional erosion mat (like MacMat™) can be installed at the front face at the time of the final top soiling operation to resist surface erosion and to promote the growth of the vegetation.

Soil bag technique

The front face of the structure may be constructed using open net soil bags filled with suitable pre-seeded topsoil. This allows exact placement of bags at the front slope space resulting in a slope with a high degree of accuracy.
Basal Reinforcement

Basal reinforced embankments on soft foundations are "short term reinforcement applications" with a limited effect of creep. The very high strength and the low reduction factors make ParaLink ideal for use as a reinforcement in such applications.

Either in the case of construction over areas prone to subsidence or in combination with piled foundations long term reinforcement applications are being designed.

In both cases the ParaLink reinforcement must guarantee long term structural behaviour and fit the design requirements.

ParaLink materials have been used in such applications since the 80’s and there is a large data base of successfully applications demonstrating the efficiency and high value performance of ParaLink geogrids; ParaLink is BBA certified for use as basal reinforcement in important structures as highway embankments.

Cost benefits

Reinforced soil foundations provide a practical solution for reinforcement under embankments on soft soils.

The first saving is in time because reducing construction time can give substantial cost benefits.

The use in combination with piles reduces the cost of the concrete part of the solution and enables embankments to be constructed to any height at an unrestricted rate.
To assist the designers, Maccaferri has developed a range of customised software applications dedicated to soil reinforcement applications.

For each basal reinforcement application, software has been developed which enables - according to the design criteria detailed in section 8 of BS 8006 - the definition of the appropriate type of ParaLink needed in the foundation of the embankment.

MacStars™ is a much more complex and sophisticated software application which enables a large number of stability analysis using different types of reinforcement (metallics like Terramesh and synthetics like ParaGrid and ParaLink) in combination with any type of soils and surrounding conditions.

This software has been fully validated by full scale tests and is actually one of the most powerful software applications for stability analysis available on the market.

Quality Assurance & Research and Development

Extensive computer controlled tests are carried out to determine the essential properties of the polyester yarns prior to manufacture. Online quality controls and post-manufacture testing ensures that the material properties fall within tight manufacturing tolerances. Extensive research and development has been undertaken by different laboratories and Universities all over the world to assess the performances of the different Paraproducts.

Detailed studies on the ParaDrain draining performances with English China Clay by the University of Newcastle, who designed the specific apparatus to measure the rate of pore water dissipation and the pullout resistance of ParaDrain under various conditions.
Quality System Guarantees
production, certified internal management and
technical assistance in compliance with ISO 9001:2000